Artificial Neural Network Modeling of High Arctic Phytomass Using Synthetic Aperture Radar and Multispectral Data
نویسندگان
چکیده
Vegetation in the Arctic is often sparse, spatially heterogeneous, and difficult to model. Synthetic Aperture Radar (SAR) has shown some promise in above-ground phytomass estimation at sub-arctic latitudes, but the utility of this type of data is not known in the context of the unique environments of the Canadian High Arctic. In this paper, Artificial Neural Networks (ANNs) were created to model the relationship between variables derived from high resolution multi-incidence angle RADARSAT-2 SAR data and optically-derived (GeoEye-1) Soil Adjusted Vegetation Index (SAVI) values. The modeled SAVI values (i.e., from SAR variables) were then used to create maps of above-ground phytomass across the study area. SAVI model results for individual ecological classes of polar semi-desert, mesic heath, wet sedge, and felsenmeer were reasonable, with r 2 values of 0.43, 0.43, 0.30, and 0.59, respectively. When the outputs of these models were combined to analyze the relationship between the model output and SAVI as a group, the r 2 value was 0.60, with an 8% normalized root mean square error (% of the total range of phytomass values), a positive indicator of a relationship. The above-ground phytomass model also resulted in a very strong relationship (r 2 = 0.87) between SAR-modeled and field-measured phytomass. A positive relationship was also found between optically derived SAVI values and field measured phytomass (r 2 = 0.79). These relationships demonstrate the utility of SAR data, compared to using optical data alone, for modeling OPEN ACCESS Remote Sens. 2014, 6 2135 above-ground phytomass in a high arctic environment possessing relatively low levels of vegetation.
منابع مشابه
Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملApplication of Displacement Map Produced by Interferometric Synthetic Aperture Radar Technique in Height Datum Determination in the Subsidence Area
Damages due to subsidence such as destruction of watering system and agricultural fertile soil, wells increasing, damage to the roads, bridges and high ways and disordering in the water and gas supplying usually are irreparable and costly. As a huge amount bench marks of height network of Iran are placed in the subsidence area, changing their heights is a challenge for NCC. In this study, a new...
متن کاملCombination of Artificial Neural Network and Genetic Algorithm to Inverse Source Parameters of Sefid-Sang Earthquake Using InSAR Technique and Analytical Model Conjunction
In this study, an inversion method is conducted to determine the focal mechanism of Sefid-Sang fault by comparing interferometric synthetic aperture radar (InSAR) technique and dislocation model of earthquake deformation. To do so, the Sentinel-1A acquisitions covering the fault and its surrounding area are processed to derive the map of line of sight (LOS) displacement over the study area. The...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کاملSoil Moisture Estimation in South-Eastern New Mexico Using High Resolution Synthetic Aperture Radar (SAR) Data
Soil moisture monitoring and characterization of the spatial and temporal variability of this hydrologic parameter at scales from small catchments to large river basins continues to receive much attention, reflecting its critical role in subsurface-land surface-atmospheric interactions and its importance to drought analysis, irrigation planning, crop yield forecasting, flood protection, and for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014